	INDIAN SCHOOL AL WADI AL KABIR	
Class: IX	DEPARTMENT OF SCIENCE -2021-22 SUBJECT: PHYSICS	$\begin{gathered} \text { DATE OF COMPLETION: } \\ 13.12 .2021 \end{gathered}$
$\begin{gathered} \text { WORKSHEET } \\ \text { NO:4 WITH } \\ \text { ANSWERS } \end{gathered}$	TOPIC: WORK AND ENERGY	A4 FILE FORMAT (PORTFOLIO)
CLASS \& SEC:	NAME OF THE STUDENT:	ROLL NO.

OBJECTIVE TYPE QUESTIONS

1. If 1 newton of force displaces a body by 1 m , the work done is
(a) 10 J
(b) 5 J
(c) 1 J
(d) Depends on time
2. On tripling the speed of motion of a body, the change in K.E is
(a) 9 times
(b) 8 times
(c) 4 times
(d) 2 times
3. A mass is moving $5 \mathrm{~m} / \mathrm{s}$ with speed of along the x -direction on a smooth surface, when a force of 5 N acts on it along the y -axis. The work done by the force is
(a) 25 J
(b) 10 J
(c) Depends on time
(d) zero
4. An electric bulb of 60 W burns for 5 hours a day. The cost of electricity involved in a month of 30 days at Rs 3.00 per unit is
(a) 270
(b) 27
(c) 2.70
(d) 2700
5. When a body falls freely towards the earth, then its total energy
(a)increases
(b) decreases
(c) remains constant
(d) first increases and then decreases
6. A battery lights a bulb. The sequence of energy transfer in the process is
(a)electrical energy to heat and light
(b) chemical energy to electrical energy and then to heat and light
(c) chemical energy to heat and light
(d) chemical energy to light
7. If a force of F newton moves a body with constant speed v , the power delivered by it is
(a) F / v
(b) Fv
(c) $\mathrm{F}^{2} v$
(d) v / F
8. The number of joules contained in 1 kWh is
(a) $36 \times 10^{5} \mathrm{~J}$
(b) $3.6 \times 10^{7} \mathrm{~J}$
(c) $36 \times 10^{8} \mathrm{~J}$
(d) $3.7 \times 10^{7} \mathrm{~J}$
9. Which one of the following is not the unit of energy?
(a) joule
(b) newton metre
(c) kilowatt
(d) kilowatt hour
10. When a coil spring is compressed, the work is done on the spring. The potential energy
(a) increases
(b) decreases
(c) disappears
(d) remains unchanged

ASSERTION AND REASONING

DIRECTION: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.
(e) Both Assertion and Reason are false.
11. Assertion: Stretched bow has potential energy

Reason: Catapult has kinetic energy
12. Assertion: Work done by an athlete completing a round of a field is zero

Reason: The displacement of a body returning back to the initial position is zero
13. Assertion: A kinetic energy of a body is quadrupled, when its velocity is doubled.
Reason: Kinetic energy is proportional to square of velocity.
14. Assertion: No work is done when a woman carrying a load on her head, walks on a level road with a uniform velocity.
Reason: No work is done if force is perpendicular to the direction of displacement
15. Assertion: Work done by friction on a body sliding down an inclined plane is positive.
Reason: Work done is greater than zero, if angle between force and displacement is acute or both are in same direction.

ONE MARK TYPE QUESTIONS

16. State the unit of work.
17. Identify energy possessed by
i. Rolling stone
ii. Stretched rubber band
18. A coolie is walking on a railway platform with a load of 30 kg on his head. How much work is done by coolie?
19. A 2 m high person is holding a 25 kg trunk on his head and standing at a roadways busterminus. How much work is done by the person?
20. A bag of wheat is dropped from a height h. What energy conversion takes place as it reaches the ground?

TWO MARKS TYPE OUESTIONS

21. Two balls of masses m each are raised to height h and 2 h respectively. What will be the ratio of their potential energies?
22. At what speed a body of mass 1 kg will have a kinetic energy of 1 J ?
23. A horse of mass 250 kg and a dog of mass 30 kg are running at the same speed. Which of the two possesses more kinetic energy? How?

THREE MARKS TYPE OUESTIONS

24. A man of mass 60 kg runs up a flight of 30 steps in 40 s . If each step is 20 cm high, calculate his power.
25. An electric bulb of 100 W works for 4hours a day. Calculate the units of energy consumed in 15 days.
26. Give an example for
(a) Force acting in the direction of displacement
(b) Force acting against the direction of displacement
(c) Force acting perpendicular to the direction of displacement

FIVE MARKS TYPE QUESTIONS

27. (a) Define Kinetic energy and derive the expression for Kinetic energy
(b) The masses of scooter and bike are in the ratio of $2: 3$, but both are moving with the same speed of $108 \mathrm{~km} / \mathrm{h}$. Compute the ratio of their kinetic energy
28. (a) Define potential energy. Derive equation for gravitational potential energy
(a) A 5 kg ball is thrown upwards with a speed of $10 \mathrm{~m} / \mathrm{s}(\mathrm{g}=10 \mathrm{~m} / \mathrm{s})$.
i) Calculate the maximum height attained by it
ii) Find the potential energy when it reaches the highest point

CASE STUDY OUESTIONS

29. The following table shows that a simple pendulum consisting of a bob of mass 100 gm . Initially the bob of the pendulum is at rest at ' O '. It is then displaced to one side at A . The height of ' A ' above ' O ' is 5 cm . (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

i. What is the value of potential energy of bob at 'A' and where does it come from?
(a) 0.05 J
(b) 0.5 J
(c) 0.0005 J
(d)50J
ii. What is the value of total energy of the bob at position A?
(a) 1 J
(b) 0.05 J
(c) 5 J
(d) 50 J
iii. What is the value of kinetic energy of the bob at mean position ' O '?
(a) 10 J
(b) 5 J
(c) 0.05 J
(d) 50 J
iv. What is the value of kinetic energy and potential energy of the bob at the position ' P ' whose height above ' P ' whose height above ' O ' is 2 cm ?
(a) $\mathrm{P} . \mathrm{E}=0.2 \mathrm{~J}$ and $\mathrm{K} . \mathrm{E}=0.3 \mathrm{~J}$
(b) $\mathrm{P} . \mathrm{E}=2.0 \mathrm{~J}$ and $\mathrm{K} . \mathrm{E}=3.0 \mathrm{~J}$
(c)P.E $=0.002 \mathrm{~J}$ and $\mathrm{K} . \mathrm{E}=0.003 \mathrm{~J}$
(d) P.E $=0.02 \mathrm{~J}$ and K.E $=0.03 \mathrm{~J}$
v. What is kinetic energy?
(a) Energy acquired due to motion
(b) Energy acquired due to rest
(c) Sum of potential and mechanical energy
(d) It is the energy stored inside a body

PREVIOUS YEAR BOARD QUESTIONS

30. Define 1J of work

CBSE 2012
31. An electric heater is rated 1500 W . How much energy does it use in 10 hours?

CBSE 2011
32. Differentiate between kW and kWh

CBSE 2013
33. A force acting on a 10 kg mass changes its velocity from $54 \mathrm{~km} / \mathrm{h}$ to $90 \mathrm{k} / \mathrm{h}$. Calculate the work done by the force

CBSE 2016

ANSWERS

1.	(c) 1 J
2.	(a)9 times (K.E $\left.\alpha \mathrm{v}^{2}\right) \quad \mathrm{v}--->3 \mathrm{v}, \quad \mathrm{K} . \mathrm{E}--->9 \mathrm{~K} . \mathrm{E}$
3.	(d) zero (as force and displacement are perpendicular)
4.	$\begin{aligned} & \text { (b) } 27 \\ & \text { Cost of electricity }=\mathrm{P} \times \mathrm{t} \times \text { cost per kW } \\ &=0.06 \mathrm{~kW} \times(5 \times 30) \times 3=\text { Rs } 27 \end{aligned}$
5.	(c) remains constant
6.	(b) chemical energy to electrical energy and then to heat and light
7.	(b) Fv
8.	(a) $36 \times 10^{5} \mathrm{~J}$
9.	(c) kilowatt
10.	(a) increases
11.	(c) Assertion (A) is true but reason (R) is false.
12.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
13.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
14.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
15.	(d) Assertion (A) is false but reason (R) is true.
16.	The SI unit of work is joule
17.	i. kinetic energy ii. potential energy
18.	Zero because angle between force and displacement is 90°
19.	Zero, because there is no displacement
20.	The energy of wheat bag changes from potential energy to kinetic energy
21.	Both the bodies have same mass. Potential energy of bodies: $\therefore(\mathrm{PE}) 1=\mathrm{mgh} \text { and }(\mathrm{PE}) 2=\mathrm{mg}(2 \mathrm{~h})$ $\Rightarrow \quad(\mathrm{PE}) 1:(\mathrm{PE}) 2=1: 2$
22.	We know that $\mathrm{K} . \mathrm{E}=1 / 2 \mathrm{~m} \mathrm{v}^{2}$ Replace K.E i.e kinetic energy by 1 J and mass (m) by 1 kg (given in the question) $\begin{aligned} & 1=1 / 2 \times 1 \times \mathrm{v}^{2} \\ & 2=\mathrm{v}^{2}(\text { take } 2 \text { to the other side }) \\ & \mathrm{v}=\sqrt{ } 2 \mathrm{~m} / \mathrm{s} \\ & \mathrm{v}=1.414 \mathrm{~m} / \mathrm{s} \end{aligned}$
23.	Kinetic energy is directly proportional to mass. Since mass of a horse (250 kg) is greater than that of a $\operatorname{dog}(30 \mathrm{~kg})$, the horse has greater kinetic energy for the same speed.
24.	$\begin{aligned} & \text { Given } \mathrm{m}=60 \mathrm{~kg}, \mathrm{t}=40 \mathrm{~s}, \mathrm{~h}=30 \times 20 \mathrm{~cm}=(30 \times 20 / 100) \mathrm{m} \\ & \text { Power= W/t=mgh } / \mathrm{t}=(60 \times 10 \times 30 \times 0.2) / 40 \\ & \quad=90 \mathrm{~W} \end{aligned}$
25.	Given $\mathrm{P}=100 \mathrm{~W}, \mathrm{t}=4$ hours

	$\begin{aligned} \text { Energy } & =\text { Power } \times \text { time }=\mathrm{P} \times(\text { no: of days }) \times(\text { no: of hours }) \\ & =100 \times 15 \times 4=6000 \mathrm{~Wh} \\ & =6 \mathrm{kWh}=6 \text { units } \end{aligned}$
26.	(a) Horizontal force applied on a table to displace it (b) Frictional force acting on a box which is being shifted (c) Gravitational pull of earth on moon
27.	The energy possessed by a body by virtue of its motion is called kinetic energy. Equation for kinetic energy Consider an object of mass, m moving with a uniform velocity, u. It displaced through a distance, s when a constant force F acts on it in the direction of its displacement Then work done, $\mathrm{W}=\mathrm{F} \times \mathrm{s} \ldots \ldots \ldots \ldots$. (1) Velocity changes from u to v. Let a be the acceleration produced. $\begin{align*} & \mathrm{v}^{2}-\mathrm{u}^{2}=2 \mathrm{as} \tag{2}\\ & \mathrm{~s}=\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{2 \mathrm{a}} \tag{3} \end{align*}$ We know, $\begin{equation*} \mathrm{F}=\mathrm{ma} \tag{4} \end{equation*}$ Substituting equations (4) and (3) in (1) Work done by the force, F is $\begin{align*} & \mathrm{W}=\mathrm{ma} \times\left(\frac{\left.\mathrm{v}^{2}-\mathrm{u}^{2}\right)}{2 \mathrm{a}}\right. \\ & \mathrm{W}=\frac{1}{2} \mathrm{~m}\left(\mathrm{v}^{2}-\mathrm{u}^{2}\right) \tag{5} \end{align*}$ Work done $=$ Change in Kinetic Energy If the object is starting from its stationary position, that is, $u=0$, then $\begin{equation*} \mathrm{W}=\frac{1}{2} \mathrm{~m} \mathrm{v}^{2} \tag{6} \end{equation*}$ Thus, the kinetic energy possessed by an object of mass, m and moving with a uniform velocity, v is $\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{~m} \mathrm{v}^{2}$ ii) Kinetic energy α Mass of body Let mass of scooter $=\mathrm{m}_{\mathrm{s}}=2 \mathrm{~m}$ $\text { Mass of bike }=\mathrm{m}_{b}=3 \mathrm{~m}$ Kinetic energy of scooter/Kinetic energy of bike $=m_{s} / m_{b}=2 \mathrm{~m} / 3 \mathrm{~m}=2: 3$
28.	The potential energy of an object is the energy possessed by the object due to its position or shape. Equation for Potential energy Consider an object of mass m is raised to a height h from the ground, the force required to raise the object is equal to the weight of the object . $\text { Force, } F=m g$ Work done $=$ Force \times displacement $\text { or } W=m g \times h=m g h$ Potential energy gained by the object $E_{p}=m g h$

	Given, mass of the ball, $m=5 \mathrm{~kg}$ Speed of the ball, $v=10 \mathrm{~m} / \mathrm{s}$ (a) Initial kinetic energy of the ball, $\mathbf{E}_{k}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2}(5)(10)^{2}=250 \mathrm{~J}$ When the ball reaches the highest point, its kinetic energy becomes zero and the entire kinetic energy is converted into its potential energy. $\therefore \mathbf{E}_{\mathbf{p}}=\mathbf{2 5 0} \mathbf{J}$ (b) If h is the maximum height attained by the ball, $\begin{aligned} & \mathbf{E}_{\mathbf{p}}=\text { mgh or mgh }=250 \mathrm{~J} \\ & \text { or } \mathrm{h}=\frac{250}{\mathrm{mg}}=\frac{250}{(5)(10)}=5 \mathrm{~m} \end{aligned}$
29.	i. The work done in raising the bob through a height of 5 cm (against the gravitational attraction) gets stored in the bob in the form of its potential energy. $\mathrm{PE}=\mathrm{mgh}=0.1 \times 10 \times 0.05=0.05 \mathrm{~J}$ ii. At position $\mathrm{A}, \mathrm{PE}=0.05 \mathrm{~J}, \mathrm{KE}=0$ So, Total energy $=0.05 \mathrm{~J}$ iii. At mean position, potential energy is zero, hence KE at $\mathrm{O}=0.05 \mathrm{~J}$. iv. $\begin{aligned} \text { PE at } \mathrm{P} & =\operatorname{mgh} \\ & =0.1 \times 10 \times 2 \times 10^{-2} \\ & =0.02 \mathrm{~J} \end{aligned}$ K.E $=$ Total energy - PE $=0.05-0.02$ $=0.03 \mathrm{~J}$ v. (a) Energy acquired due to motion
30.	1 joule is the amount of work done when a force of 1 N displaces an object through 1 metre in the direction of the force applied.
31.	$\begin{aligned} & \text { Power }=\text { Energy } / \text { Time } \\ & \text { Energy }=\text { Power } \times \text { time } \\ & =1500 \mathrm{~W} \times 10 \mathrm{~h} \\ & =15000 \mathrm{~Wh}=15 \mathrm{kWh} \end{aligned}$
32.	kW is the unit of power and kWh is the unit of energy
33.	$\begin{aligned} & \mathrm{m}=10 \mathrm{~kg}, \mathrm{u}=54 \mathrm{~km} / \mathrm{h}, \mathrm{v}=90 \mathrm{~km} / \mathrm{h} \\ & \mathrm{u}=15 \mathrm{~m} / \mathrm{s}, \mathrm{v}=25 \mathrm{~m} / \mathrm{s} \end{aligned}$ Work done of an object =change in kinetic energy Work done $=1 / 2 \mathrm{~m}\left(\mathrm{v}^{2}-\mathrm{u}^{2}\right)$ $\begin{aligned} & \mathrm{W}=5\left(25^{2}-15^{2}\right) \\ & \mathrm{W}=5(625-225) \\ & =5 \times 400=2000 \end{aligned}$ Work done $\mathrm{W}=2 \mathrm{~kJ}$

